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Fluctuations of doublet splittings using the annular billiard
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We study the statistical distribution of quantum energy splittings due to a dynamical tunneling. The system,
the annular billiard, has whispering quasimodes due to a discrete symmetry that exists even when chaos is
present in the underlying classical dynamics. Symmetric and antisymmetric combinations of these quasimodes
correspond to quantum doublet states whose degeneracies decrease as the circles become more eccentric. We
construct numerical ensembles composed of splittings for two distinct regimes, one which we call semiclassical
for high quantum numbers and high energies where the whispering regions are connected by chaos, and other
which we call quantal for low quantum numbers, low energies, and near integrable where dynamical tunneling
is not a dominant mechanism. In both cases we observe a variation on the fluctuation amplitudes, but their
mean behaviors follow the formula of Leyvraz and Ullfib Phys. A29, 2529(1996)]. A description of a
three-level collision involving a doublet and a singlet is also provided through a numerical example.
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I. INTRODUCTION whispering gallery tori, through the chaotic sea.
) . ] . ) A splitting distribution generated by ensembles of random
Tunneling, when associated with chaotic classical dynammatrices [10] was treated by Leyvraz and Ullmfll] to
ics, has been responsible for appreciable manifestations imodel the chaotic tunneling process, wherein they have pro-
many quantum scales, and for this reason it has been thgded analytical expressions to evaluate the probability of
object of many studies. Originally, Davis and Helld] in-  occurrence of splittings. Their main assumption is that cha-
troduced the nomenclature of dynamical tunneling to explairotic tunneling is the only, or at least the dominant, operative
forbidden classical motions in systems with some discretenechanism. Associated with this, they pose that it is not
symmetry when no conventional potential barrier is presentnecessary that all chaotic states should participate equally in
However, this kind of tunneling is quite wide because it maythe tunneling process nor that the couplings should be uni-
occur even in an integrable system, for instance, when #rm. They have checked their formulas using the coupled
particle jumps from one rotation torus to another one withquartic oscillator potential for which the numerical and the-
opposite sense around the hyperbolic fixed point of a sepretical results have shown a good agreement.

ratrix [2,3]. One notable work relating classical chaos and N Ref. [6], the authors considered a one-dimensional
tunneling was published by Lin and Ballentif# using the time-dependent system, periodic in time and in position, and

double well potential with a periodically time-dependentthey have observed that for a particular set of parameters,

monochromatic driving force, where the concept of tunnelWhen the system becomes nearly fully integrable, the statis-

- ; ; : tical distribution of tunneling splittings is also in good agree-

ing doublets was introduced. Later, Bohigdsl. [5] defined : L . . .
cci . : . . nent with the predictions found in Rgfl1]. Regarding this

chaos-assisted tunneling as the increasing of dynamical tu:Eoint, we judged that the annular billiard would be a very

nellng'eﬁeclts d'uelt(()j the Increasing of chattl)s l?/ln thﬁ E[:orr good model to analyze the applicability of Leyvraz and Ul-
sponding classical dynamics, more recently Mouchel ang,, qistripution, firstly due to the our previous knowledge
DeIande[G]_renamed this _effect as chaot|c_ t_unnellng due ©about it [12] and also because this system has a discrete
the flgctuatlons observed in the energy splittings. From semiz mmetry generating congruent tori, associated with doublet
c,jlassg:al approaches, many authors have developed calcu ates, where dynamical tunneling is nicely related to the
tlon§ ml order Itp dsscrlble nl;orfe p7)reC|hser thk? EffedCt]f’ of dy'classical dynamics. As is well known, the energy splittings
hamical tunne Ing[ ._9]' n Ret. (7], t e authors define a ,qqjjate as a perturbation parameter is changed, so that our
quantity called parity of motion, associated with complex,.,q,q4) in this work is to study these fluctuations in two
solutions of the Hamilton-Jacobi equation, which allowsgygpions one from a statistical point of view constructing

nonclasspal motion as _dynar_mcal tnneling. In. F_{S!], an  ensembles of splittings and other from a local analysis of a
approach is presented in which the energy splittings due three-level interaction

tunneling are related to th&matrix elements, which are o aiicle is organized as follows. In Sec. Il we briefly

s_em|<I:IaF525|fc%IIy ﬂetermlr}edbplyl/_ C‘;’?S'dle“”g Cor_gple)étrajeﬁtobresent the main points concerning the classical dynamics of
ries. In Ref.[9], the annular billiard is also considered viathe o 5nh 1ar billiard, and in Sec. Ill we show the essential

scattering theory, wherein the phase splittings are associalgg, jas for its quantization. Section IV is devoted to the

with paths connecting the quasimodes, supported by thﬁumerical aspects of the precision of the calculations. In Sec.

V we construct the humerical ensembles and we present the

obtained results on the splitting distribution. In Sec. VI we
*Electronic mail: regydio@rc.unesp.br take advantage of this model to obtain a numerical collision
"Electronic mail: apmas@rc.unesp.br between a singlet and a doublet, showing a scenario of col-
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=h2k?/2m. For the concentric cas@=0), besides the en-
ergy, the orbital angular momentum is also conserved due to
the rotational symmetry. In this case the system is globally
integrable and, except for the zero angular momentum states
that are singlets, all the others are doublets.

Ford> 0, the angular momentum is no longer conserved.
However, the system still has a discrete symmetry under re-
flections with respect to the line joining the centers of the
two circles. Consequently, the eigenstates of Eq. still

b have well defined parity, but now the boundary condition at
the inner circle depends on the angle. Classically, this depen-
dence is read as responsible for introducing chaos to the
system and, quantum mechanically, it plays the role of a
coupling between states of doublets through chaotic states
breaking down their degeneracigs12. This mechanism is

FIG. 1. The annular billiard and the region covered by thecalled dynamical tunneling. One way to solve Ef) is to

WGO. perform a coordinate transformation through a Fourier ex-
pansion, following Refs[14-14, changing the reference

lision. Finally, we conclude the article in Sec. VII. frame to the origin of the inner circle. Thus the even and the
odd solutions of the two-dimensional wave equation in polar

Il. THE MODEL coordinateqdr, 6) referred to the origin QFig. 1) are
The annular billiard12,13 consists of two circumscribed 12 = cosi 6
circles where the inner one may dislocate itself and also Vo)== > EE€AQXY ., (2
change its radius. The outer circle has radiyg numerical ' i=i0 n=n0 sinid

calculations we seb=1) and the inner circle has radius
a(<b). In the accessible ring a particle moves in an uniform
rectilinear motion and undergoes elastical reflections on the Q&° = [J;(kb) - F(ka)Y;(kb)J[Ji_n(kd) + (= 1)™PJ;,n(kd)]
boundaries. Thus, one has billiard families of two param- 3)
eters, each family specified by the pea d), whered is the
eccentricity. The orbits fall into two classes, the ones whichwith ng, iy, p=0 orng, ig, p=1 for even or odd parity, respec-
never hit the inner circle, the whispering gallery orbits tively, andej=2-4; ;. The quantitiesA, are integration con-
(WGO), and those which do hit it at least once. Except forstants andF,(ka)=J,(ka)/Y,(ka). The eigenwavenumbek§
the limiting casea+d=b, the WGO always exist and they lie andk® correspond to the values &fthat satisfy
inside the shadowed symmetrical annular region of Fig. 1, £0
limited by the outer circle and the caustics, a circle with det|Qn; |:O- (4)
radius(a+d). The WGO are read in phase space as congru- The precision of the numerical results is improved by
ent tori and they are represented there by straight lines. Thyrying the order of the determinants, and the doublet split-
area of the WGO region remains constant, evehisfvaried,  tings are given byAk=|kE-k°|. The doublets we consider
when (a+d) is kept constant. This is a very important tool are built on combinations of WGO tori for which the semi-
because it ensures that chaos will not “devour” the congruenfjassical Einstein-Brillouin-Kelle(EBK) quantization gives
tori that support the quantum doublets. exactly degenerate energies. These tori correspond to hori-
The Poincaré sections are described in the variables zontal lines lying in the regiofi§ = (a+d) in the Poincaré
=6/2m and S=sin(a), whereL is the normalized arc length gection(L, S), whose positions are identified by
andSis the sine of the reflection angle at a collision with the
outer circle as presented in Fig. 1. Thus, the ranges 05
areL:[3,2] andS: [-1,1]. In Fig. 2, some plots are shown
for (a+d)=0.45 and for different values of the eccentridity
The chaotic sea grows withand fromd= 0.06 both borders
of WGO, at|§=0.45, are connected by chaos.

here

n
sina=—=S5, 5
na= (5

wherek is the unperturbed eigenwavenumber & the
ordinate of phase space. As we have already pointed out, it is
important to consider doublets corresponding to billiard
Ill. QUANTIZATION families with (a+d) fixed because as the eccentricity is
changed, increasing or decreasing the chaotic sea, the area

~ The corresponding quantum problem to the annular bilgncigsing the quantized WGO tori remains undisturbed.
liard consists in determining the spectrum of the wave equa-

tion IV. NUMERICAL ANALYSIS
2\Iy —
AV +KW =0, (@) By looking at Eq.(3), we note the Bessel's functions
with Dirichlet boundary conditions on the borders, whkeis  Z(arg) should be evaluated in the argumekis kb, andkd,
the wavenumber related to the enerdy through E  whereb=1 in all calculations. The range of eigenwavenum-
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FIG. 2. Poincaré sections wifta+d)=0.45:(a) d=0.03,(b) d=0.04,(c) d=0.06, andd) d=0.07. The units are arbitrary.

bers we have searched was aroks®3-278, and since the detk), and it may become null if we find a root or if all
dynamical parameters have the constrdmtd)=0.45, the elements of a line, or of a column, are nulls. This latter
values ofa fall in the range 0.38—0.45 so that the argumentspossibility occurs with relative frequency and it constitutes a
ka of Z, are between 8 and 126. The evaluatiorZgfin kd  natural condition to truncate the determinant. From the nu-
requires more attention asbecomes small, because there ismerical point of view, we stipulate a precisien= 10° and

a cutoff on the order ofl,, andY, may diverge. We have we consider the matrix elements non-null when their abso-
used themsL routines to evaluate th&, and, for the superior lute values are greater than eps. From there we look for the
limit (kb) =278, we have 15 siginificant digits converged for maximum order of the determinant. The roots of(ketre
n=0-847. To have the same precision for the inferior limitsearched by the bisection method and the precision of the
(kd) — 0, we have gone the closest possible to the concentrieigenvalues is verified by varying the order of the determi-
case, but this has varied depending on the local density dgfant. As we increase or decrease the order, we observe how
levels and mainly if there was some “fast” level near themany digits have converged and we compare this with the
doublet under observation. For instance, when arg&ét@  local mean spacing of levels. Firstly, we compute the Weyl
evaluateZ,, with n up to 41, for arg=1 the limiting n is  density of levels[17] for this billiard [N(k)=(1/4m)(AK*

61, and when arg=18 n ends in 81. Even though difficul- —Lk)] in a very small window ok and the mean spacing in
ties may occur whed— 0, we point out that the more inte- this window, for a small range a, whereA is the area of
grable the system is, the more stable the doublets; hence, itike ring andL is the perimeter along the borders. Next, we
possible to follow them in a safe way. With these cautionsask if the of the eigenvalues is greater than the mean spacing.
we construct the matrices and next we evaluate its determif not, we neglect the eigenvalues and go on; otherwise, we
nant also throughmsL. The determinant is a function & keep them. Finally, the numerical results concerning the
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FIG. 3. Dynamics of logyAk| versusd exhibiting the fluctuations for the semiclassical doublets listed in Table 1. Observe that they are

very close in phase space but their behaviors are very different.

splitting dynamics are presented in Figs. 3—7.

V. DOUBLET DISTRIBUTION

bers and their position on phase space. In Table |, we present
four of them. We have fixed the quantum numheo define

a family having the same angular momentum, and we chose
four consecutivgin the quantum numben) eigenwavenum-
bers near the causti§=0.45 to amplify the coupling be-

In order to analyze the statistical effects of dynamicalyyeen chaotic states and doublet states, vehed. The fam-
tunneling, we first calculate the unperturbed eigenwavenunity chosen, n=125, corresponds to an extremely high

35} ' '

g
o
T

log,,[P(AK)]

o

»

quantum number, and the associated eigenwavenumbers are
also in a scale of very high energies. In comparison, the
unperturbed fundamental state Has5.66 and the value of

the doublet #4 of Table k=277, would closely correspond

to the 7400th level if the whole spectrum had been obtained.
For this reason, we call this familyy=125, semiclassical
doublets.

In a second moment, we dislocate the inner circledup
~0.06, which is sufficient to initialize classical transport be-
tween the upper and the lower WGO regions, and we search
for the solutions of Eq(3) in a small range of values af
=0.06-0.07. In Fig. 3 we exhibit the behavior of the split-
tings of the selected doublets, where we see a lot of fluctua-
tions even with nearly unmodified classical dynamics. The

FIG. 4. Splitting fluctuations distribution using the four semi- splittings have varied many orders of magnitude, and the
classical doublets. The points are our numerical results, while thfluctuations are due to the high density of levels in the semi-

full line represents the analytical results by Leyvraz and Ulimo.

classical regime, which leads to several quasicollisions
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FIG. 5. (a) A single peak in the dynamics of Igg|Ak| versusd for the quantum doublet of Table Iib) Enlargement around the peak
showing two avoided crossings involving a doublet and two singlets.

among chaoti¢or even regulagrlevels with the doublets. We to the high density of levels, so that we would expect that a
will return to this point later. For the same reason, the calcueertain splitting was nearly equally probable to occur, in a
lations needed a high numerical precision. Although the dourange of splittings before the crossover point, and for the
blets are neighbors in phase space and pertaining to the sars@me reason the probability should decay nearly uniformly.
family n=125(see Table), we found different behaviors for We suppose that these deviations may be related to the dif-
their quantum dynamical splitting. The origins of these dif-ferent behavior cited above concerning the splittings pre-
ferences are not clear as yet. The occurrence of these flusented in Fig. 3.
tuations makes the chaotic tunneling denomination, intro- In order to verify the extension of the applicability of the
duced by Mouchet and Delandig], more adjusted to denote theoretical results presented in REf1], we prepare another
the influence of classical chaos on the dynamical tunnelingnsemble, but now in a different regime. We choose a dou-
process. blet near the botton of the spectrum with low quantum num-
Since the dynamics of the doublet splittings is establishedper n=11, low eigenwavenumbeéc=23.75 (for d=0), and
we construct an ensemble of splittings in the cited rangg of also neighbor to the caustic, as presented in Table IlI. If we
and with the chosen semiclassical famity; 125. The inter-  had obtained the whole spectrum this valueafould cor-
val of d is divided into 500 subintervals, and we calculate therespond to the 51st level. We call this doublet a quantum
splittings of the four selected doublets for each valud of  doublet.
such way the ensemble has 2000 components. For each valueln this scale of the spectrum, the mean spacing of levels is
of splitting, we ask how many splittings have fallen inside it greater than the one in the semiclassical regime, or in other
and we plot the probability of each one occurring in a scewords, the spectrum has anottiescale. An immediate con-
nario wherein chaotic tunneling is the dominant mechanisnsequence is the decreasing of quasicollisions between other
and the classical dynamics is near constant. In Fig. 4, wéevels and the doublet, and thus there is a reduction of the
present a logyrlog,q plot of this probability, which shows fluctuations, as may be observed in Fig. 5. In Figr)5we
that the analytical predictiorisee Ref[11] for detailg agree

in a very good way with the average behavior of the numeri- 395405 |-

cal results even though some deviations exist. This point is 2

still not clear because in this semiclassical regime there are 58,8400 L ¥ .
many near collisions and consequently many fluctuations due //l

[ Ak
. ¥39.5395 n / Ak 1

k A1
’3—24 3 39,5390 :-T~-‘jf- \AL — ]
— P’ 4
< b
E_’ 2 39,5385 ¢ Even Parity -
= i + 0dd Parity
=2 1 39,5380 P S T T
= 0.80155 0.50160 0.50165 0.80170 0.80175
d
|Og10(Ak) FIG. 7. A singlet-doublet interaction. An avoided crossing be-

tween levels of same parity, a crossing between levels of distinct
FIG. 6. Splitting fluctuation distribution using the quantum parities, and the nondegenerate doublet during the entire interaction
doublet. are shown. This doublet is a new one, not listed in the Tables.
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TABLE |. Four semiclassical doublets. They are identified by the quantum nurtibens and belong to
the family n=125. S identifies their position on phase space; they are near the caustik,Fhare the
eigenwavenumbers whet=0.

Doublet n m Kym S=n/k
1 125 31 266.228 850 577 77 4.695 208 642 06510 *
2 125 32 269.867 115138 99 4.631 909 298 604191
3 125 33 273.562 306 747 40 4.569 342 958 3X71D*
4 125 34 277.334 066 941 87 4.507 199 615 91191

present the dynamics of the doublet splitting as functiod of In the second scenario, they will repel each other, hurling
where a single peak is visible. In Fig(B, we plot values of the level doublet towards its partner of the other parity, in-
k around the peak, where tlie,m)=(11, 3 near-degenerate creasing the degeneradgee Ref.[6]]. Even though it is
doublet appears together with two singlets of different paritheoretically possible to obtain an exact degeneracy between
ties. There are two avoided crossings that lead in fact to twgartners of a doublet, it is worthwhile to emphasize that up
peaks, but the second is not visible using the scale of Fighis stage we did not find it in our numerical calculations.
5(a). Actually, we have found another situation for the second
An effect of theh scale is that the doublet acquires a scenario, not mentioned by the authors of Réf, which
significant spacing even whet=0. We construct the en- does not include the appearing of crossing of levels of a
semble with the chosen doublet in the rarde0.03-0.04 doublet. This is shown in Fig. 7. It is important to point out
(see Fig. 2 divided into 2000 subintervals. In this context, that in this case the doublet does not correspond to the ones
chaos does not connect the WGO regions; thus, there is rsted in the tables; we have sought it in a convenient range
dynamical tunneling effect. In Fig. 6, we present the numeri-of k and of d (see the figure scaleln this numerical ex-
cal splitting distribution(dots for this quantum doublet to- ample, a singlet of odd parity comes from the lower part of
gether with the corresponding analytical formyfall line)  the plot towards the doublet. In this three-level context, the
from Ref.[11]. We note that the analytical prediction again two levels of same parity are consecutive in the spectrum.
fits the numerical results in a reasonable way. A similar re-The repulsion between the(rectangle 1 makes the old odd
sult, in a different system, has been noticed by Mouchet andoublet level cross the even doublet leeéctangle 2
Delande[6]. In both works, the systems are quasi-integrable However, looking at the crossing point in the plot, we per-
thus, dynamical tunneling is not the dominant mechanism, oceive that the doublet is well defined by two parallel straight
it does not exist. lines and hence there is no doublet degeneracy. The split-
tings, before and after the avoided crossing, are indicated by
arrows andAk. What happened is as usual, at an avoided
VI. COLLISION BETWEEN A SINGLET AND A DOUBLET crossing, the involved levels exchange their roles in the level

dynamics.
As we have already pointed out, the near collisions of

levels with a doublet induce fluctuations on the doublet split-

. . - . . VII. CONCLUSIONS
ting. For instance, if a level of a specific parity goes towards

the doublet, there are two possibilities: it will fin@) the We have chosen a very convenient model, the annular
doublet level of different parity ofii) the doublet level of billiard, to study numerically the splittings distribution in the
same parity. semiclassical and quantum regimes as well as the local quan-

In the first scenario, the uncorrelated doublet level followstum dynamics of three levels. This model preserves a dis-
its trajectory while the others of same symmetry repel themerete symmetry even when there is chaos in the classical
selves, increasing the splitting and producing peaks as seelynamics, and due to that, dynamical tunneling may occur in
in Figs. 3 and B). As an example we present, in Fighy  the quantum counterpart. This latter is strongly influenced by
two near collisions of two singlets of different parities with chaos, but due to the several near collisions occurring in the
the doublet(n,m)=(11,3 at two values of the pertubation quantum dynamics, there are fluctuations in the splitting
parameter. They generate two closely spaced peaks in theagnitudes. These fluctuations were evaluated with good
rectangle seen in Fig.(&), which may be explained through quantum numbers, or families of the same angular momen-
this first scenario. tum. In the semiclassical regime, we have taken a set of

TABLE Il. A quantum doublet near the botton of the spectrum belonging to the famsilyl. It is near

the caustic.
Doublet n m kum S=n/k
5 11 3 23.747 794 041989 4.632 009 179 694131
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extremely high doublets in a context where chaotic tunnelingions. To finish, we would like to emphasize that all compu-
is the dominant mechanism, and we have verified that anaational calculations to follow a level or a doublet were done
lytical predictions[11] are in good agreement with the mean since the near-concentric configuratials 0, especially for
behavior of our numerical results. The observed deviationshe semiclassical case because there are too many closely
should be investigated in more detail in order to clarify whatspaced levels in the spectrum. Moreover, the incremendt of
is their origin. This agreement has also been observed with was as small as possible. With these numerical contributions,
low doublet where there is no chaotic tunneling. It seems fomwe believe that a little more is understood concerning quan-
us that chaotic tunneling is only sufficient, but not necessartum chaos.
for the applicability of the Leyvraz and Ullmo distribution.

We have also presen_te_:d a numgrlcal e_xample_concermng ACKNOWLEDGMENTS
the local process of collision involving a singlet with a dou-
blet. In our investigations up to now, no exact doublet degen- We would like to thank the Brazilian agency Fapesp for
eracy was observed, while the peaks were well describegartial financial support through the process 01/11840-2. We
through the correlation between the level of the doublet andlso thank A. Mouchet and J.S.E. Ortiz for useful discus-
the singlet. These points will be analyzed in future calcula-sions.
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