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We study the statistical distribution of quantum energy splittings due to a dynamical tunneling. The system,
the annular billiard, has whispering quasimodes due to a discrete symmetry that exists even when chaos is
present in the underlying classical dynamics. Symmetric and antisymmetric combinations of these quasimodes
correspond to quantum doublet states whose degeneracies decrease as the circles become more eccentric. We
construct numerical ensembles composed of splittings for two distinct regimes, one which we call semiclassical
for high quantum numbers and high energies where the whispering regions are connected by chaos, and other
which we call quantal for low quantum numbers, low energies, and near integrable where dynamical tunneling
is not a dominant mechanism. In both cases we observe a variation on the fluctuation amplitudes, but their
mean behaviors follow the formula of Leyvraz and Ullmo[J. Phys. A 29, 2529 (1996)]. A description of a
three-level collision involving a doublet and a singlet is also provided through a numerical example.
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I. INTRODUCTION

Tunneling, when associated with chaotic classical dynam-
ics, has been responsible for appreciable manifestations in
many quantum scales, and for this reason it has been the
object of many studies. Originally, Davis and Heller[1] in-
troduced the nomenclature of dynamical tunneling to explain
forbidden classical motions in systems with some discrete
symmetry when no conventional potential barrier is present.
However, this kind of tunneling is quite wide because it may
occur even in an integrable system, for instance, when a
particle jumps from one rotation torus to another one with
opposite sense around the hyperbolic fixed point of a sepa-
ratrix [2,3]. One notable work relating classical chaos and
tunneling was published by Lin and Ballentine[4] using the
double well potential with a periodically time-dependent
monochromatic driving force, where the concept of tunnel-
ing doublets was introduced. Later, Bohigaset al. [5] defined
chaos-assisted tunneling as the increasing of dynamical tun-
neling effects due to the increasing of chaos on the corre-
sponding classical dynamics, more recently Mouchet and
Delande[6] renamed this effect as chaotic tunneling due to
the fluctuations observed in the energy splittings. From semi-
classical approaches, many authors have developed calcula-
tions in order to describe more precisely the effects of dy-
namical tunneling[7–9]. In Ref. [7], the authors define a
quantity called parity of motion, associated with complex
solutions of the Hamilton-Jacobi equation, which allows
nonclassical motion as dynamical tunneling. In Ref.[8], an
approach is presented in which the energy splittings due to
tunneling are related to theS-matrix elements, which are
semiclassically determined by considering complex trajecto-
ries. In Ref.[9], the annular billiard is also considered via the
scattering theory, wherein the phase splittings are associated
with paths connecting the quasimodes, supported by the

whispering gallery tori, through the chaotic sea.
A splitting distribution generated by ensembles of random

matrices [10] was treated by Leyvraz and Ullmo[11] to
model the chaotic tunneling process, wherein they have pro-
vided analytical expressions to evaluate the probability of
occurrence of splittings. Their main assumption is that cha-
otic tunneling is the only, or at least the dominant, operative
mechanism. Associated with this, they pose that it is not
necessary that all chaotic states should participate equally in
the tunneling process nor that the couplings should be uni-
form. They have checked their formulas using the coupled
quartic oscillator potential for which the numerical and the-
oretical results have shown a good agreement.

In Ref. [6], the authors considered a one-dimensional
time-dependent system, periodic in time and in position, and
they have observed that for a particular set of parameters,
when the system becomes nearly fully integrable, the statis-
tical distribution of tunneling splittings is also in good agree-
ment with the predictions found in Ref.[11]. Regarding this
point, we judged that the annular billiard would be a very
good model to analyze the applicability of Leyvraz and Ul-
lmo distribution, firstly due to the our previous knowledge
about it [12] and also because this system has a discrete
symmetry generating congruent tori, associated with doublet
states, where dynamical tunneling is nicely related to the
classical dynamics. As is well known, the energy splittings
oscillate as a perturbation parameter is changed, so that our
proposal in this work is to study these fluctuations in two
fashions, one from a statistical point of view constructing
ensembles of splittings and other from a local analysis of a
three-level interaction.

The article is organized as follows. In Sec. II we briefly
present the main points concerning the classical dynamics of
the annular billiard, and in Sec. III we show the essential
formulas for its quantization. Section IV is devoted to the
numerical aspects of the precision of the calculations. In Sec.
V we construct the numerical ensembles and we present the
obtained results on the splitting distribution. In Sec. VI we
take advantage of this model to obtain a numerical collision
between a singlet and a doublet, showing a scenario of col-
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lision. Finally, we conclude the article in Sec. VII.

II. THE MODEL

The annular billiard[12,13] consists of two circumscribed
circles where the inner one may dislocate itself and also
change its radius. The outer circle has radiusb (in numerical
calculations we setb=1) and the inner circle has radius
as,bd. In the accessible ring a particle moves in an uniform
rectilinear motion and undergoes elastical reflections on the
boundaries. Thus, one has billiard families of two param-
eters, each family specified by the pair(a, d), whered is the
eccentricity. The orbits fall into two classes, the ones which
never hit the inner circle, the whispering gallery orbits
(WGO), and those which do hit it at least once. Except for
the limiting casea+d=b, the WGO always exist and they lie
inside the shadowed symmetrical annular region of Fig. 1,
limited by the outer circle and the caustics, a circle with
radiussa+dd. The WGO are read in phase space as congru-
ent tori and they are represented there by straight lines. The
area of the WGO region remains constant, even ifd is varied,
when sa+dd is kept constant. This is a very important tool
because it ensures that chaos will not “devour” the congruent
tori that support the quantum doublets.

The Poincaré sections are described in the variablesL
=u /2p andS=sinsad, whereL is the normalized arc length
andS is the sine of the reflection angle at a collision with the
outer circle as presented in Fig. 1. Thus, the ranges of(L, S)
areL :f−1

2 , 1
2
g andS: f−1,1g. In Fig. 2, some plots are shown

for sa+dd=0.45 and for different values of the eccentricityd.
The chaotic sea grows withd and fromd*0.06 both borders
of WGO, at uSuù0.45, are connected by chaos.

III. QUANTIZATION

The corresponding quantum problem to the annular bil-
liard consists in determining the spectrum of the wave equa-
tion

DC + k2C = 0, s1d

with Dirichlet boundary conditions on the borders, wherek is
the wavenumber related to the energyE through E

=q2k2/2m. For the concentric casesd=0d, besides the en-
ergy, the orbital angular momentum is also conserved due to
the rotational symmetry. In this case the system is globally
integrable and, except for the zero angular momentum states
that are singlets, all the others are doublets.

For d.0, the angular momentum is no longer conserved.
However, the system still has a discrete symmetry under re-
flections with respect to the line joining the centers of the
two circles. Consequently, the eigenstates of Eq.(1) still
have well defined parity, but now the boundary condition at
the inner circle depends on the angle. Classically, this depen-
dence is read as responsible for introducing chaos to the
system and, quantum mechanically, it plays the role of a
coupling between states of doublets through chaotic states
breaking down their degeneracies[9,12]. This mechanism is
called dynamical tunneling. One way to solve Eq.(1) is to
perform a coordinate transformation through a Fourier ex-
pansion, following Refs.[14–16], changing the reference
frame to the origin of the inner circle. Thus the even and the
odd solutions of the two-dimensional wave equation in polar
coordinatessr ,ud referred to the origin O(Fig. 1) are

CE,Osr,ud =
1

2o
i=i0

`

o
n=n0

`

[i[nAnQni
E,O 3 Hcosiu

sin iu
, s2d

where

Qni
E,O = fJiskbd − FnskadYiskbdgfJi−nskdd + s− 1dn+pJi+nskddg

s3d

with n0, i0, p=0 orn0, i0, p=1 for even or odd parity, respec-
tively, ande j =2−d j ,0. The quantitiesAn are integration con-
stants andFnskad=Jnskad /Ynskad. The eigenwavenumberskE

andkO correspond to the values ofk that satisfy

detuQni
E,Ou = 0. s4d

The precision of the numerical results is improved by
varying the order of the determinants, and the doublet split-
tings are given byDk= ukE−kOu. The doublets we consider
are built on combinations of WGO tori for which the semi-
classical Einstein-Brillouin-Keller(EBK) quantization gives
exactly degenerate energies. These tori correspond to hori-
zontal lines lying in the regionuSuù sa+dd in the Poincaré
section(L, S), whose positions are identified by

sina =
n

k
= S, s5d

where k is the unperturbed eigenwavenumber andS is the
ordinate of phase space. As we have already pointed out, it is
important to consider doublets corresponding to billiard
families with sa+dd fixed because as the eccentricity is
changed, increasing or decreasing the chaotic sea, the area
enclosing the quantized WGO tori remains undisturbed.

IV. NUMERICAL ANALYSIS

By looking at Eq. (3), we note the Bessel’s functions
Zn(arg) should be evaluated in the argumentska, kb, andkd,
whereb=1 in all calculations. The range of eigenwavenum-

FIG. 1. The annular billiard and the region covered by the
WGO.
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bers we have searched was aroundk=23–278, and since the
dynamical parameters have the constraintsa+dd=0.45, the
values ofa fall in the range 0.38–0.45 so that the arguments
ka of Zn are between 8 and 126. The evaluation ofZn in kd
requires more attention asd becomes small, because there is
a cutoff on the order ofJn, and Yn may diverge. We have
used theIMSL routines to evaluate theZn and, for the superior
limit skbd<278, we have 15 siginificant digits converged for
n=0–847. To have the same precision for the inferior limit
skdd→0, we have gone the closest possible to the concentric
case, but this has varied depending on the local density of
levels and mainly if there was some “fast” level near the
doublet under observation. For instance, when arg=10−6 we
evaluateZn with n up to 41, for arg=10−3 the limiting n is
61, and when arg=10−2 n ends in 81. Even though difficul-
ties may occur whend→0, we point out that the more inte-
grable the system is, the more stable the doublets; hence, it is
possible to follow them in a safe way. With these cautions,
we construct the matrices and next we evaluate its determi-
nant also throughIMSL. The determinant is a function ofk,

detskd, and it may become null if we find a root or if all
elements of a line, or of a column, are nulls. This latter
possibility occurs with relative frequency and it constitutes a
natural condition to truncate the determinant. From the nu-
merical point of view, we stipulate a precisione<10−15 and
we consider the matrix elements non-null when their abso-
lute values are greater than eps. From there we look for the
maximum order of the determinant. The roots of detskd are
searched by the bisection method and the precision of the
eigenvalues is verified by varying the order of the determi-
nant. As we increase or decrease the order, we observe how
many digits have converged and we compare this with the
local mean spacing of levels. Firstly, we compute the Weyl
density of levels[17] for this billiard fNskd=s1/4pdsAk2

−Lkdg in a very small window ofk and the mean spacing in
this window, for a small range ofd, whereA is the area of
the ring andL is the perimeter along the borders. Next, we
ask if the of the eigenvalues is greater than the mean spacing.
If not, we neglect the eigenvalues and go on; otherwise, we
keep them. Finally, the numerical results concerning the

FIG. 2. Poincaré sections withsa+dd=0.45: (a) d=0.03,(b) d=0.04,(c) d=0.06, and(d) d=0.07. The units are arbitrary.
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splitting dynamics are presented in Figs. 3–7.

V. DOUBLET DISTRIBUTION

In order to analyze the statistical effects of dynamical
tunneling, we first calculate the unperturbed eigenwavenum-

bers and their position on phase space. In Table I, we present
four of them. We have fixed the quantum numbern to define
a family having the same angular momentum, and we chose
four consecutive(in the quantum numberm) eigenwavenum-
bers near the causticS=0.45 to amplify the coupling be-
tween chaotic states and doublet states, whendÞ0. The fam-
ily chosen, n=125, corresponds to an extremely high
quantum number, and the associated eigenwavenumbers are
also in a scale of very high energies. In comparison, the
unperturbed fundamental state hask<5.66 and the value of
the doublet #4 of Table I,k<277, would closely correspond
to the 7400th level if the whole spectrum had been obtained.
For this reason, we call this family,n=125, semiclassical
doublets.

In a second moment, we dislocate the inner circle upd
<0.06, which is sufficient to initialize classical transport be-
tween the upper and the lower WGO regions, and we search
for the solutions of Eq.(3) in a small range of values ofd
=0.06–0.07. In Fig. 3 we exhibit the behavior of the split-
tings of the selected doublets, where we see a lot of fluctua-
tions even with nearly unmodified classical dynamics. The
splittings have varied many orders of magnitude, and the
fluctuations are due to the high density of levels in the semi-
classical regime, which leads to several quasicollisions

FIG. 3. Dynamics of log10uDku versusd exhibiting the fluctuations for the semiclassical doublets listed in Table I. Observe that they are
very close in phase space but their behaviors are very different.

FIG. 4. Splitting fluctuations distribution using the four semi-
classical doublets. The points are our numerical results, while the
full line represents the analytical results by Leyvraz and Ullmo.
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among chaotic(or even regular) levels with the doublets. We
will return to this point later. For the same reason, the calcu-
lations needed a high numerical precision. Although the dou-
blets are neighbors in phase space and pertaining to the same
family n=125(see Table I), we found different behaviors for
their quantum dynamical splitting. The origins of these dif-
ferences are not clear as yet. The occurrence of these fluc-
tuations makes the chaotic tunneling denomination, intro-
duced by Mouchet and Delande[6], more adjusted to denote
the influence of classical chaos on the dynamical tunneling
process.

Since the dynamics of the doublet splittings is established,
we construct an ensemble of splittings in the cited range ofd
and with the chosen semiclassical family,n=125. The inter-
val of d is divided into 500 subintervals, and we calculate the
splittings of the four selected doublets for each value ofd in
such way the ensemble has 2000 components. For each value
of splitting, we ask how many splittings have fallen inside it
and we plot the probability of each one occurring in a sce-
nario wherein chaotic tunneling is the dominant mechanism
and the classical dynamics is near constant. In Fig. 4, we
present a log10-log10 plot of this probability, which shows
that the analytical predictions(see Ref.[11] for details) agree
in a very good way with the average behavior of the numeri-
cal results even though some deviations exist. This point is
still not clear because in this semiclassical regime there are
many near collisions and consequently many fluctuations due

to the high density of levels, so that we would expect that a
certain splitting was nearly equally probable to occur, in a
range of splittings before the crossover point, and for the
same reason the probability should decay nearly uniformly.
We suppose that these deviations may be related to the dif-
ferent behavior cited above concerning the splittings pre-
sented in Fig. 3.

In order to verify the extension of the applicability of the
theoretical results presented in Ref.[11], we prepare another
ensemble, but now in a different regime. We choose a dou-
blet near the botton of the spectrum with low quantum num-
ber n=11, low eigenwavenumberk<23.75 (for d=0), and
also neighbor to the caustic, as presented in Table II. If we
had obtained the whole spectrum this value ofk would cor-
respond to the 51st level. We call this doublet a quantum
doublet.

In this scale of the spectrum, the mean spacing of levels is
greater than the one in the semiclassical regime, or in other
words, the spectrum has anotherq scale. An immediate con-
sequence is the decreasing of quasicollisions between other
levels and the doublet, and thus there is a reduction of the
fluctuations, as may be observed in Fig. 5. In Fig. 5(a), we

FIG. 7. A singlet-doublet interaction. An avoided crossing be-
tween levels of same parity, a crossing between levels of distinct
parities, and the nondegenerate doublet during the entire interaction
are shown. This doublet is a new one, not listed in the Tables.

FIG. 5. (a) A single peak in the dynamics of log10 uDku versusd for the quantum doublet of Table II.(b) Enlargement around the peak
showing two avoided crossings involving a doublet and two singlets.

FIG. 6. Splitting fluctuation distribution using the quantum
doublet.
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present the dynamics of the doublet splitting as function ofd
where a single peak is visible. In Fig. 5(b), we plot values of
k around the peak, where thesn,md=s11,3d near-degenerate
doublet appears together with two singlets of different pari-
ties. There are two avoided crossings that lead in fact to two
peaks, but the second is not visible using the scale of Fig.
5(a).

An effect of theq scale is that the doublet acquires a
significant spacing even whend=0. We construct the en-
semble with the chosen doublet in the ranged=0.03–0.04
(see Fig. 2) divided into 2000 subintervals. In this context,
chaos does not connect the WGO regions; thus, there is no
dynamical tunneling effect. In Fig. 6, we present the numeri-
cal splitting distribution(dots) for this quantum doublet to-
gether with the corresponding analytical formula(full line)
from Ref. [11]. We note that the analytical prediction again
fits the numerical results in a reasonable way. A similar re-
sult, in a different system, has been noticed by Mouchet and
Delande[6]. In both works, the systems are quasi-integrable,
thus, dynamical tunneling is not the dominant mechanism, or
it does not exist.

VI. COLLISION BETWEEN A SINGLET AND A DOUBLET

As we have already pointed out, the near collisions of
levels with a doublet induce fluctuations on the doublet split-
ting. For instance, if a level of a specific parity goes towards
the doublet, there are two possibilities: it will find(i) the
doublet level of different parity or(ii ) the doublet level of
same parity.

In the first scenario, the uncorrelated doublet level follows
its trajectory while the others of same symmetry repel them-
selves, increasing the splitting and producing peaks as seen
in Figs. 3 and 5(a). As an example we present, in Fig. 5(b),
two near collisions of two singlets of different parities with
the doubletsn,md=s11,3d at two values of the pertubation
parameter. They generate two closely spaced peaks in the
rectangle seen in Fig. 5(a), which may be explained through
this first scenario.

In the second scenario, they will repel each other, hurling
the level doublet towards its partner of the other parity, in-
creasing the degeneracy[see Ref.[6]]. Even though it is
theoretically possible to obtain an exact degeneracy between
partners of a doublet, it is worthwhile to emphasize that up
this stage we did not find it in our numerical calculations.
Actually, we have found another situation for the second
scenario, not mentioned by the authors of Ref.[6], which
does not include the appearing of crossing of levels of a
doublet. This is shown in Fig. 7. It is important to point out
that in this case the doublet does not correspond to the ones
listed in the tables; we have sought it in a convenient range
of k and of d (see the figure scale). In this numerical ex-
ample, a singlet of odd parity comes from the lower part of
the plot towards the doublet. In this three-level context, the
two levels of same parity are consecutive in the spectrum.
The repulsion between them(rectangle 1) makes the old odd
doublet level cross the even doublet level(rectangle 2).
However, looking at the crossing point in the plot, we per-
ceive that the doublet is well defined by two parallel straight
lines and hence there is no doublet degeneracy. The split-
tings, before and after the avoided crossing, are indicated by
arrows andDk. What happened is as usual, at an avoided
crossing, the involved levels exchange their roles in the level
dynamics.

VII. CONCLUSIONS

We have chosen a very convenient model, the annular
billiard, to study numerically the splittings distribution in the
semiclassical and quantum regimes as well as the local quan-
tum dynamics of three levels. This model preserves a dis-
crete symmetry even when there is chaos in the classical
dynamics, and due to that, dynamical tunneling may occur in
the quantum counterpart. This latter is strongly influenced by
chaos, but due to the several near collisions occurring in the
quantum dynamics, there are fluctuations in the splitting
magnitudes. These fluctuations were evaluated with good
quantum numbers, or families of the same angular momen-
tum. In the semiclassical regime, we have taken a set of

TABLE I. Four semiclassical doublets. They are identified by the quantum numberssn,md and belong to
the family n=125. S identifies their position on phase space; they are near the caustic. Thekn,m are the
eigenwavenumbers whend=0.

Doublet n m kn,m S=n/k

1 125 31 266.228 850 577 77 4.695 208 642 065 7310−1

2 125 32 269.867 115 138 99 4.631 909 298 604 9310−1

3 125 33 273.562 306 747 40 4.569 342 958 327 1310−1

4 125 34 277.334 066 941 87 4.507 199 615 912 9310−1

TABLE II. A quantum doublet near the botton of the spectrum belonging to the familyn=11. It is near
the caustic.

Doublet n m kn,m S=n/k

5 11 3 23.747 794 041 9 89 4.632 009 179 694 9310−1
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extremely high doublets in a context where chaotic tunneling
is the dominant mechanism, and we have verified that ana-
lytical predictions[11] are in good agreement with the mean
behavior of our numerical results. The observed deviations
should be investigated in more detail in order to clarify what
is their origin. This agreement has also been observed with a
low doublet where there is no chaotic tunneling. It seems for
us that chaotic tunneling is only sufficient, but not necessary,
for the applicability of the Leyvraz and Ullmo distribution.

We have also presented a numerical example concerning
the local process of collision involving a singlet with a dou-
blet. In our investigations up to now, no exact doublet degen-
eracy was observed, while the peaks were well described
through the correlation between the level of the doublet and
the singlet. These points will be analyzed in future calcula-

tions. To finish, we would like to emphasize that all compu-
tational calculations to follow a level or a doublet were done
since the near-concentric configuration,d<0, especially for
the semiclassical case because there are too many closely
spaced levels in the spectrum. Moreover, the increment ofd
was as small as possible. With these numerical contributions,
we believe that a little more is understood concerning quan-
tum chaos.
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